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SUMMARY 
A hybrid numerical-analytical solution for steady-state natural convection in a porous cavity is proposed, 
based on application of the ideas in the generalized integral transform technique. The integral transforma- 
tion process reduces the original coupled partial differential equations, for temperature and stream function, 
into an infinite system of non-linear ordinary differential equations for the transformed potentials, which is 
adaptively truncated and numerically solved through well-established algorithms. The approach is applied 
to a vertical rectangular enclosure subjected to uniform internal heat generation. The convergence charac- 
teristics of the explicit inversion formulae are illustrated and critical comparisons with previously reported 
purely numerical solutions are performed. 
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INTRODUCTION 

Natural convection phenomena in porous media represent one important segment of the heat 
and mass transfer field, with direct applications in thermal insulations, radioactive waste disposal, 
solar energy collectors and geothermal energy analysis. Various contributions appeared in the 
literature within the last two decades, which are reviewed in References 1-4. More specifically, 
natural convection within two-dimensional porous enclosures has been dealt with computation- 
aily through well-known finite differen~el-~ and finite element  technique^,^ besides approximate 
asymptotic solutions.’ In addition to the interesting physics pertinent to this class of problems, 
the associated system of coupled elliptic partial differential equations for temperature and stream 
function, provides an important test case in the development of new solution techniques for 
convection-diffusion problems. 

Within the last few years, the ideas in the so-called generalized integral transform technique,’ 
were progressively advanced towards the establishment of an alternative hybrid numer- 
ical-analytical approach, for a priori non-transformable diffusion and convection-diffusion 
problems. Based on the formal analytical principles in the classical integral transformation 
method,6 various classes of linear problems, not a priori tractable through this classical method, 
were handled. Such developments are systematically presented in Reference 5 and include 
situations of variable equation and boundary coefficients, irregular geometries, unseparable 
eigenvalue problems, moving boundaries and conjugated and coupled problems, etc. More 
recently, the same basic principles were successfully employed in the analysis of non-linear 
diffu~ion’.~ and convection-diffusion The present note is, therefore, one more step 
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in the effort of reaching the full potential of this promising approach, by testing its performance in 
the class of problems represented by steady-state natural convection within a two-dimensional 
porous cavity. The technique is illustrated by considering a vertical rectangular porous enclosure, 
subjected to uniform internal heat generation and cooling from the side walls. This example was 
thoroughly studied in Reference 1 through a careful implementation of the control volume 
a p p r ~ a c h , ’ ~  providing extensive results for validation purposes. 

The proposed integral transformation eliminates the dependence on one of the co-ordinates 
and yields a denumerable system of second-order non-linear Ordinary Differential Equations 
(ODE) for the transformed temperature and stream function. This ODE system is then truncated 
to a sufficiently large finite order and numerically solved through well-established algorithms for 
boundary value problems, available in scientific subroutines l ib rar ie~’~  with appropriate auto- 
matic error control. The explicit inversion formula then recovers the original potentials, provid- 
ing an analytical solution in the transformed direction. The convergence behaviour of the 
inversion formula is demonstrated here for a few representative values of the governing para- 
meters, Rayleigh number and aspect ratio. Also, fully converged results for temperature and 
Darcy velocities are used to validate the previously reported purely numerical solutions. 

ANALYSIS 

We consider two-dimensional, steady natural convection in a saturated porous rectangular 
enclosure, subjected to an uniform internal heat generation and to cooling at both side walls, 
which are kept at the same uniform temperature. The top and bottom ends are kept insulated, 
according to Figure 1. Within the validity of Darcy’s law and after invoking the Boussinesq 
approximation, the problem formulation in dimensionless form is given by’ 

+(x, 0)  = $(X, A )  = 0, 
____ a q x ,  0) - - a ~ ( ~ ,  A )  = 0, 

aY aY 

where various dimensionless groups are defined as’ 

h 
d’ 

X *  Y* $=- $* A = -  x=- y=- 
d ’  d ’  a 

(T*  - Tw) 
S d 2 / k  ’ avk (2) 

p g S K d 3  
Ra = ___ = Rayleigh number T= 

and the dimensionless Darcy velocities are obtained from the stream function distribution 
according to the definitions 

(3a, b) a* a* 
8Y’ ax u= --. u=- 



NATURAL CONVECTION IN POROUS ENCLOSURES 789 

P 

1.0 
u s 0  

a 

f 

POROUS 
MEDIUM 

Figure 1. Geometry and co-ordinate system 

Problem (1) above has a symmetry line at x=  1/2, with a stagnation streamline dividing the 
flow into two identical cells. Therefore, ahernative boundary conditions at this centreline are 
written as 

which substitute equations (Id) and (If) and the solution domain is redefined as O<x<1/2, 
O d y < A .  

The generalized integral transform t e c h n i q ~ e ~ , ~ - ~ ~  is now utilized to solve problem (1) and 
following the formalism in this approach, the appropriate auxiliary problems are chosen as 

x i ( o ) = x i  - =o, i = l , 2 , .  . G) 
for transformation of equation (la) and 

for the transformation of equation (lb), where pz and 2,” are the respective eigenvalues, and x,(x) 
and r,(x) the associated normalized eigenfunctions, which are readily obtained in explicit form as 

x i ( x ) = 2  sin pix ;  pi=2i71 (7a, b) 
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and 
T,(x)=2 sin Anx, 1,=(2n- 1)n. 

The eigenvalue problems (5) and ( 6 )  are of the Sturm-Liouville type and allow definition of the 
following integral transform pairs: 

&(y) = [:’2 xi(x) $(x, y) dx, transform, 

‘W 

$(x, Y)= 1 xi(x)$i(y), inversion, 
i =  1 

z ( y )  =j” l-,(x) T(x ,  y) dx, transform, 
0 
W 

T(x ,  y) = 1 T,(x) T,(y), inversion. 
n = 1  

We now operate on equation (la) with 1:’’ xi(x)dx, and make use of the boundary conditions 
(lc) and (4a), to obtain 

Similarly, equation (lb) is operated on with Jii2 Tn(x) dx and boundary conditions (le) and (4b) 
are utilized, to yield 

where the transformed heat generation term becomes 

The non-transformable terms in equations (9a) and (9b) are now evaluated by substituting the 
inversion formulae (8b) and (8d) in the appropriate integrals, to provide 

where 

a,.= J:’2 xi(x)ri(x) dx  

and prime denotes differentiation with respect to x. Also, 

where 



NATURAL CONVECTION IN POROUS ENCLOSURES 79 1 

and finally, 

where 

J O  

The integrals in equations (lob), (10d) and (1Of) are readily integrated and obtained in 
analytical closed form. Equations (9a) and (9b) are then rewritten as 

dzqi m 

dY2 j= 1 
-=d$i(y)--Ru aijq(y), i = l , 2 , .  . . , co, 

The corresponding boundary conditions are obtained through the appropriate integral trans- 
formation of equations (1g)-(lj), that results in 

qi(0) = 0,  gi( A)  = 0, (1 k d) 

System (1 1) above forms an infinite set of coupled second-order non-linear ODES subjected to 
boundary conditions at two points. For computational purposes, the system is truncated at 
a sufficiently large finite order for the desired precision, which corresponds to truncating the 
expansions for * at the Nth term and the expansions for Ta t  the Mth term. The formal aspects 
that warrant convergence of the truncated system to the infinite system solution, as N ,  M-roo,  are 
discussed in Reference 5 and are not repeated here. The truncated system then becomes, in normal 
form 

w‘=p(w, Y )  (12a) 
where the solution vector w is given by 

and 

N M  

M + c c B I - ( 2 N +  M), j , k w  2 N  + k w  N +  j 
j = l  k = l  

I M N  - 

- c c B ~ - ( 2 N + M ) , j , k w k w 2 N + M + j - h - ( 2 N + M ) ,  
j=1  k = l  

1 (2N+M+ 1),<1<(2N+2M), 
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with boundary conditions 

The boundary value problem (12) is in a suitable form for the application of well-established 
algorithms available in scientific subroutine packages, such as the IMSL library.14 Subroutine 
DBVPFD in this library is one example of a reliable boundary value problem solver, which 
allows for automatic error control, until the required accuracy is achieved. Once the transformed 
potentials $i and Fn, have been obtained with prescribed precision, the inversion formulae, 
equations (Xb) and (Xd), are recalled to provide an explicit analytic expression for the original 
potentials, $(x, y )  and T(x, y),  at any desired position. 

RESULTS AND DISCUSSION 

The present problem was solved for different values of the governing parameters, Rayleigh 
number and aspect ratio, namely, A =0.1,0.2,05, 1.0,2.0, 5.0 and 10.0, Ra = 10,50, 100, 500 
and 1000. 

First, the convergence behaviour of this eigenfunction expansion-type approach is illustrated in 
Tables I and 11, for stream function and temperature, respectively, with Ra = 100 and A = 5. To 

Table I. Convergence of temperature distribution ( N  = M ,  tolerance = Ra = 100 A = 5) 

Y N x=O.1 x=0.2 x=03 x = 0.4 x=0.5 

0.0 

01111 

2.2222 

4.8889 

5-0000 

5 
9 

13 
17 
22 

5 
9 

13 
17 
22 

5 
9 

13 
17 
22 

5 
9 

13 
17 
22 

5 
9 

13 
17 
22 

0.03210 
0.03200 
0.03202 
0.03202 
0.03202 

0.03390 
0.03378 
0.03379 
0.03380 
0.03379 

094493 
0.04479 
0.04480 
0.0448 1 
0.04480 

0.06 142 
0.06 124 
0.06 126 
0.06 126 
0.06 126 

0.065 8 3 
0.0655 3 
006556 
0.06556 
0.06556 

0.05924 
0.0593 1 
0.059 3 2 
0.05932 
0.05932 

0.06136 
0.06145 
0.06146 
0.06145 
0.06145 

0.07953 
0.07962 
0.07963 
0.07963 
0.07963 

0.1025 
0.1026 
0,1026 
0.1026 
0.1026 

0.1063 
0.1065 
0.1065 
0.1065 
0.1065 

0.08 182 
0.08 179 
0.08 178 
0.08178 
0.08 179 

0.08355 
0.08350 
0.08 3 50 
0.08350 
0.08 3 50 

0.1046 
0.1045 
0.1045 
0.1045 
0.1045 

0.1271 
0.1270 
0.1270 
0.1270 
0.1270 

0.1299 
0.1297 
0.1297 
0.1297 
0.1297 

0.09713 
0.097 19 
0.09718 
0.09718 
0.09719 

0.09820 
0.09828 
0.09 8 27 
0.09 8 27 
0.09827 

0.1193 
0.1194 
0.1194 
0.1 194 
0.1194 

0.1397 
0.1398 
0.1397 
0.1397 
0.1397 

0.1415 
0.1416 
0.1416 
0.1416 
0.1416 

0.1028 
0.1028 
0.1027 
0.1027 
0.1027 

0.1036 
0.1035 
0.1035 
0.1035 
0.1035 

0.1244 
0.1244 
0.1244 
0.1244 
0.1244 

0.1438 
0.1437 
0.1437 
0.1437 
0.1437 

0.1454 
0.1453 
0.1453 
0.1453 
0.1453 
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simplify the tables, the truncation orders in the two expansions were kept equal, i.e. N = M ,  and 
varying from M = 5 up to 22. The ODE solver was employed with a required tolerance of lop4, 
which means that the fully converged results are expected to be correct to k1 in the fourth 
significant digit. The tables present results for t,h and T a t  various locations within the cavity, in 
order to cover all the regions of different physical and mathematical behaviour. From an 
inspection of Table I, it can be noticed that the temperature results for N = 9 are, in general, 
already fully converged to the four digits required, with a slightly slower convergence rate close to 
the wall at x=O, within the boundary layer. From Table XI, the stream function results demon- 
strate to be essentially fully converged for N=13, again with some slight improvement in 
convergence for the more internal points in the horizontal direction. Similar conclusions concern- 
ing this well-behaved convergence were drawn for the other cases tested, with almost uniform 
convergence rates within the medium. 

Figures 2-4 show comparisons of the present integral transform solutions with the finite 
difference results in Reference 1, for all the three dependent variables, horizontal velocity, vertical 
velocity and temperature, with different values of Ra and A. The fully converged integral 
transform results obtained within prescribed accuracy, validate the discrete approach results in 
all situations considered, both in the interior of the enclosure and in the vicinity of the top and 
bottom end walls, where all three variables experience more significant variations. These results 
were obtained with N = M < 18, and a relative error target for the boundary value problem solver 
of lop4. A typical run in the VAX 8810 computer takes about 138 s of CPU time. 

1.1111 

2.2222 

Table 11. Convergence of stream function distribution (N = M, tolerance= Ra= 100, A =  5) 

Y N x=O.l x = 0.2 x = 0.3 x =0.4 x=0.5 

5 0.2790 0.3424 0.2969 0.1673 0 0  
9 0.2736 0.3446 0.295 1 0.1678 0.0 

0.1111 13 0.2744 0.345 1 0.2952 0.1681 0.0 
17 0.2743 0.345 1 0.2953 01679 0.0 
22 0.2743 0.3450 0.2953 0.1679 0.0 

5 0.5823 0.1634 0.67 19 0.3814 0.0 
9 0.5752 0.7660 0.6693 0.3821 0.0 

13 0.5763 0.7666 0.6694 0,3824 0.0 
17 0.5762 0.7666 0.6696 03822 0.0 
22 0.5761 0.7666 0.6696 0.3822 0.0 

5 0.6030 0.7921 0.69 8 1 0.3967 0.0 
9 0.5957 0.7948 0.6955 0.3974 0.0 

13 0.5969 0.7954 0.6956 0.3976 0.0 
17 0.5967 0.7954 0.6957 0.3974 0.0 
22 0.5966 0.7954 0.6957 0.3975 0.0 
5 0.6060 0.7964 0.7019 0.3989 0.0 
9 05987 0.7991 0.6993 03996 0.0 

3.3333 13 0.5999 0.7997 0.6994 0.3999 0.0 
17 0.5997 0.7997 0.6996 03997 0.0 
22 0.5997 0.7996 0.6996 0.3997 0.0 

5 0.61 77 0.8019 0.6995 0.3944 0.0 
9 0.6101 0.8048 0.6967 0.3952 0.0 

4.4444 13 0.61 13 0.8054 0.6968 0.3955 0.0 
17 0.61 11 0.8054 0.6970 0.3952 0.0 
22 0-61 11 0,8053 0.6970 0.3952 0.0 
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Figure 2. Comparison of generalized integral transform solution (GITT) with finite differences results:' horizontal 
velocity profiles along x=O.2 

Figure 3. Comparison of generalized integral transform solution (GITT) with finite differences results:' vertical velocity 
profiles along the vertical centreline (x =05) 
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Figure 4. Comparison of generalized integral transform solution with finite differences results:' temperature profiles 
along the centreline (x =0.5) 

Table I11 brings the influence of aspect ratio on the convergence rates of both temperature and 
stream function distributions, for the case of Ra- 100, relative error target of lop4 and A = 10, 1, 
or 0.2. Only the higher values of the truncation order, N ,  are presented, in order to make the 
analysis of convergence more clear. For the temperature distribution, the convergence character- 
istics are essentially independent of the aspect ratio, either large or small, for representative 
positions within the medium, including the vicinity of the walls. The stream function distribu- 
tions, although presenting slower convergence rates when compared to the temperature beha- 
viour, again do not seem to be markedly affected by the value of A.  With similar concerns, 
Table IV illustrates the influence of Rayleigh number on convergence rates of temperature and 
stream function distributions, for the case of A = 1 and taking the values Ra = 50 and 500. Clearly, 
in the range of parameters considered, the increase in Ra does not significantly affect the 
convergence behaviour, with some slight slowing down for the convergence at x = 0.05. For very 
high Rayleigh number, however, the source term in the stream function problem might increase 
markedly and cause much slower convergence. In such situations, filtering procedures, alternative 
enhanced series and/or coupled auxiliary problems5, ' may be employed to overcome such 
difficulties, in case the consideration of larger truncation orders is to be avoided. 

Table V demonstrates the influence of the relative error target requested to the boundary value 
problem solver, on the final results for both temperature and stream function, illustrated here for 
the case Ra= 100, A =2, and taking a truncation order of N =  10. Representative values for the 
input tolerances were considered, tolerance= and and even lower values 
could have been adopted. However, it is clear from this table, that the error control scheme in this 
subroutine is a conservative one, and it more than suffices to fix the ODE solver tolerance to the 
number of correct digits desired in the final solutions. The value of tolerance = provides even 
six correct digits in most cases considered. 
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Table 111. Influence of aspect ratio (A) on convergence of temperature and stream function distributions 
(Ra = 100, tolerance = 

Y N 

A =  10 

x=O.1 x=0.5 

T(x,  Y )  
A = l  A = 0.2 

x=Od x=0.5 

0.0 10 
12 
14 
16 
18 

A 10 
12 
14 
16 
18 

0.03200 0.1027 
0.03201 0 1027 
0.03202 0.1027 
0.03202 01027 
0.03202 0 1027 

0.06 5 5 3 0 1453 
0.06555 0.1453 
0.06557 01453 
0.06557 01453 
0.06556 0.1453 

0.03234 01043 
0.03235 0.1043 
0.03236 0.1043 
0.03236 0.1043 
0.03236 0.1043 

0.06075 0.1362 
0.06077 0.1363 
0.06079 0.1363 
0.06079 01363 
0.06078 0.1363 

0.042 17 0.1 240 
0.042 1 8 0.1240 
0.042 1 9 0.1 240 
0.042 19 0.1240 
0.042 19 0.1 240 

0.0475 1 0.1245 
0.04753 0.1245 
0,04754 0.1245 
0.04754 0.1245 
0.04754 0.1245 

Y N 

10 
12 
14 
16 
18 

2.222 
( A =  10) 
0.222 
( A =  1) 
0.01 1 
(A=0.2) 

10 
12 
14 
16 
18 

8.889 
( A =  10) 
0.889 
( A =  1) 
0.1 70 
(A = 0.2) 

W? Y 1 
x=o.1 x = 0.4 x=O.1 x=0.4 

0.5957 0.3974 0.4078 0.2608 
0.5965 03973 0.4089 0.2609 
0.5970 03975 0.4084 0.2608 
0.5969 0.3976 0.4087 026 10 
0.5966 0.3976 0.4085 02610 

0.6012 0.40 12 0.3634 0.1682 
0.6020 0401 1 0.3651 0.1683 
0.6025 04013 0.3644 0.1681 
0.6024 0.4014 0.3649 0.1685 
0.602 1 0.4014 0.3645 01685 

x=0-1 ~ = 0 . 4  

0.03 15 0.0105 
0.0320 0.0105 
0.0322 0.0 106 
0.0322 0.0 106 
0.0320 0.0 106 

0.0760 0.0244 
0.0768 0.0243 
0.0773 0.0245 
0.0772 0.0246 
0.0769 0.0246 

Figure 5 shows a comparison of local Nusselt number along the vertical wall (x = 0), obtained 
from the expression 

(13) dx 

For a best computational performance, the derivative in equation (1 3) above is not evaluated 
directly from the analytical differentiation of the inverse formula, equation (8d), since this 
approach produces a slower converging series due to the appearance of the monotonically 
increasing eigenvalue in the derivative expression. This well-known behaviour in eigenfunction 
expansions is easily avoided by considering instead, the alternative enhanced series produced by 
the integral energy b a l a n ~ e , ~ , ' ~  i.e. through integration of the energy equation, equation (1 b), 
within the x domain, to yield 
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Table IV. Influence of Rayleigh number (Ra)  on convergence of temperature and 
stream function distributions ( A  = 1, tolerance = 

T(X> Y) 
Ra = 50 Ra = 500 

N x = 0.05 x = 0.25 x = 0.05 x = 0.25 Y 

16 0.01982 
18 0.01981 
20 0.0 198 1 
22 0.0198 1 

16 0.02846 
18 0.02845 
20 0.02845 
22 0.02845 

0 

1 .o 

0.08222 
0.08222 
0.08222 
0.08222 

0.1044 
0.1 044 
0- 1044 
0.1044 

0.00887 
0.008 8 7 
0.008 8 7 
0.00887 

0.05503 
0.05499 
005498 
0.05499 

0.03895 
0.03895 
0.03895 
0.03 8 9 5 

0.1102 
01102 
0.1 102 
0.1 102 

Y N 
- 

16 

0.222 

0.889 

18 
20 
22 

16 
18 
20 
22 

x = 0.05 

0.1343 
0.1342 
0.1 342 
01342 

0.1 149 
0.1148 
0.1148 
0.1 148 

$(x, Y) 
x=0.2 x = 0.05 

0.2851 0.7909 
0.2851 0.7903 
0-285 1 07902 
0.2852 0.7903 

0.2073 1.125 
0.2072 1.123 
0.2073 1.123 
0-2073 1.123 

x = 0.2 

1.685 
1.685 
1,684 
1.685 

1.359 
1.359 
1.358 
1.359 

Nu 
Figure 5. Comparison of Nusselt number along cooled wall, at x=O, with finite differences results' 
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which is readily evaluated in analytic form upon substitution of the inversion formulae in the 
integrals above. 

Here some deviations are observed between the two solution procedures, specially in the 
vicinity of the top end wall and for increasing Rayleigh number. The integral transform results for 

Table V. Influence of local relative error for the ODE solver12 on the global error of temperature and 
stream function (N = 10, Ra = 100, A = 2) 

T(x,  Y )  
Y Tolerance x=O.l x = 0.2 x = 0.3 x = 0 4  x=0.5 

10-4 0.0319997 0.0593035 0.0817784 0.0971804 0.1027412 
10-5 0.0319996 0.0593034 0.0817784 0.0971803 0102741 1 
10-6 0.0319996 0.0593034 0.0817784 0.0971803 0.102741 1 
10-7 0.0319996 0.0593034 00817784 0.0971803 0.102741 1 

10-4 0.064701 3 0.105 1842 0 128262 1 0.1 400795 0.1437 189 
10-5 0.0647013 0.1051843 0.1282622 0.1400796 0.1437190 
10-6 0.064701 3 0.105 1843 0.1282622 0.1400796 0.1437 190 
10-7 0.0647013 0.1051843 0.1282622 0.1400796 0.1437190 

0.0 

2.0 

10-4 0.27361 10 
10-5 0.2736110 
10-6 0.27361 10 
10-7 0.27361 10 

10-4 0.3584616 
10-5 0.35846 17 
10-6 0.3584617 
10-7 0.35846 17 

0.1 11 

1.903 

0.3446482 
0.3446480 
0.3446480 
0.3446480 

0.3961861 
0.3961 862 
0.3961862 
0.3961 862 

*(X> Y )  
0.2951457 
0.295 1455 
0.295 1455 
0.2951455 

0.3047445 
0 3047446 
0.3047446 
0.3047446 

0.1678918 
0.167891 7 
0.1678917 
0.1678917 

0.1616959 
0.1616959 
0.1616959 
0.1616959 

0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 

Table VI. Convergence of Nusselt number and the relative error in the overall energy balance 

(Ra=50, A=2, tolerance= 
N y = 0.0 y = 0.5 y = 1.0 Error (YO) 

(energy balance) 
~ -~ - 

10 0.8288 0.99 13 1.232 0.00 106 
13 0.8287 0.99 13 1.232 0.002 5 8 
15 0.8286 0.99 13 1.232 0.00234 
17 0.8286 0.99 13 1.232 0.00 182 
19 0.8286 0.99 13 1.232 0.000 1 6 
21 0.8285 0.99 13 1.232 0.00053 

(Ra = 100, A = 2, tolerance = 

N y = 0.0 y = 0.5 y =  1.0 Error (YO) 
(energy balance) 

10 0.7094 0.98 1 1 1.508 0.00819 
0.00671 13 0.7092 0.98 1 1 1310 

15 0.709 1 0.98 1 1 1.5 10 0.00594 
17 0,7090 0.98 1 1 1.510 0.00564 
19 0.7090 0.98 1 1 1.510 0.00576 
21 0.7090 0.98 1 1 1.511 0.00473 
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Nusselt number are, however, fully converged to four significant digits with N = M d 20, as 
illustrated in Table VI for these two cases (Ra = 50, A = 2 and Ra = 100, A = 2). Therefore, devia- 
tions on the Nusselt number results are most probably due to the propagation of errors in the 
numerical differentiation of the discrete information from the finite differences solution. In order 
to confirm this observation, we have computed the relative error in the overall energy balance, 
which is also presented in Table VI. While the finite differences solution in Reference 1 achieved 
an order of 2% relative error in the energy balance, the present results reach errors of only 
0.0001%, as good as it could be, in accordance with the requested accuracy. 

Figures 6(a) and 6(b) present one set of streamlines and isotherms, respectively, in the case of 
Ra = 500 and A = 2, for reference purposes. All the physical trends pointed out in Reference 1 are 
observed here. Near the cold walls, the convective motion becomes more important and 
isotherms are more closely spaced. The point of maximum II/ is closer to the top and the flow 
pattern is asymmetric in the vertical direction. Isotherms are flatter at the top of the enclosure and 
more parallel at the bottom where conduction predominates. 
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Figure A = 2  



800 C. BAOHUA AND R.  M. COTTA 

1 l.80 

j 
. 1.80 

. 1.40 

, 1 2 0  

f.00 

0.80 

0.60 

0.40 

0.20 

(b) Ro=500 A = 2  
Figure.6. (Continued) 

Finally, it should be noted that this approach under development is already flexible enough to 
be extended to more complex problems, such as in the cases of multilayered media, irregular 
geometries, moving boundaries, variable properties, etc., by combining different and recent 
contributions in the generalized integral transform technique.’ The analysis of transient problems 
shall also follow, through application of successive integral transformations in each spatial 
co-ordinate, as discussed in Reference 5, and numerically solving the resulting initial value 
problem with automatic control of the relative error. In addition, more general models than the 
Darcian flow analysed here, may be considered, including non-linear convective terms in the 
momentum equations, such as in the case of the full Navier-Stokes equations,”*” recently 
handled through the same approach. 
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A 
d 
9 
h 
k 
K 
M ,  N 
Ra 
S 
T, T* 
T w  

u, v 
x, X *  

Y? Y* 

B 
1” 

*> * *  

c1 

Pi 
V 

i, n 

APPENDIX: NOMENCLATURE 

aspect ratio (= h / d )  
width of enclosure 
acceleration due to gravity 
height of enclosure 
effective thermal conductivity 
permeability 
number of terms in truncated expansions 
Rayleigh number (= PgSKd 3/ctvk) 
uniform volumetric heat generation rate 
temperature distribution, dimensionless and dimensional 
cold walls temperature 
horizontal and vertical velocities, dimensionless 
horizontal co-ordinate, dimensionless and dimensional 
vertical co-ordinate, dimensionless and dimensional 
effective thermal diffusivity 
coefficient of volumetric expansion 
eigenvalues of problem (6) 
eigenvalues of problem (5) 
kinematic viscosity 
stream function, dimensionless and dimensional 
integral transformed quantity 
order of eigenvalue 
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